> 数学 >
已知:如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°,求证:①AC=BD;②∠APB=50°.
人气:308 ℃ 时间:2019-08-31 14:48:46
解答
证明:①∵∠AOB=∠COD=50°,
∴∠AOB+∠BOC=∠COD+∠BOC,
∴∠AOC=∠BOD.
在△AOC和△BOD中,
AO=BO
∠AOC=∠BOD
OC=OD

∴△AOC≌△BOD(SAS),
∴AC=BD;
②∵△AOC≌△BOD,
∴∠OAC=∠OBD,
∴∠OAC+∠AOB=∠OBD+∠APB,
∴∠OAC+60°=∠OBD+∠APB,
∴∠APB=50°.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版