| lim |
| x→+∞ |
| 1 |
| x |
a=
| lim |
| x→+∞ |
xln(e+
| ||
| x |
| lim |
| x→+∞ |
| 1 |
| x |
b=
| lim |
| x→+∞ |
| lim |
| x→+∞ |
| 1 |
| x |
=
| lim |
| x→+∞ |
ln(e+
| ||
|
| lim |
| t→0+ |
| ln(e+t)−1 |
| t |
| lim |
| t→0+ |
| 1 |
| e+t |
| 1 |
| e |
所以渐近线方程为y=x+
| 1 |
| e |
故答案为:y=x+
| 1 |
| e |
| 1 |
| x |
| lim |
| x→+∞ |
| 1 |
| x |
| lim |
| x→+∞ |
xln(e+
| ||
| x |
| lim |
| x→+∞ |
| 1 |
| x |
| lim |
| x→+∞ |
| lim |
| x→+∞ |
| 1 |
| x |
| lim |
| x→+∞ |
ln(e+
| ||
|
| lim |
| t→0+ |
| ln(e+t)−1 |
| t |
| lim |
| t→0+ |
| 1 |
| e+t |
| 1 |
| e |
| 1 |
| e |
| 1 |
| e |