一直圆m的方程为(x+3)^2+y^2=100及定点n(3,0),动点p在圆m上运动 线段pn的垂直平分线交圆m的半径mp于Q点,设点Q的轨迹为曲线c
1.求c的曲线方程
2 试问过点T(0,根号10)是否存在直线l,使直线l与曲线c交与a,b亮点 且向量OA·向量OB=0 (O为原点坐标)存在,求出L 不存在说明理由
TAT
人气:468 ℃ 时间:2019-10-19 00:32:19
解答
⑴椭圆
设圆心为R
∵Q是PN和圆的半径RP的交点
∴QN=QP
∴QR+QN=QR+QP=RP=10
即Q点到两个定点(-3,0)和(3,0)的距离之和为10(>定点之间距离6)
∴为椭圆
方程为x^2/25+y^2/16=1
⑵假设存在这样的直线,
①当斜率不存在时,显然不符合题意
②设斜率为k,则直线方程可写为y=kx+√10
设A、B点坐标为(x1,y1),(x2,y2)
联立化简可得(25k^2+16)^2+50√10kx-150=0
∴x1+x2=-50√10k/(25k^2+16)
x1x2=-150/(25k^2+16)
∴y1y2=(kx1+√10)(kx2+√10)=k^2x1x2+√10k(x1+x2)+10
∵向量OA·OB=0
∴x1x2+y1y2=0
代入可得
推荐
- 已知A点的坐标为(-12,0),B是圆F:(x-12)2+y2=4上一动点,线段AB的垂直平分线交于BF于P,则动点P的轨迹为( ) A.圆 B.椭圆 C.双曲线的一支 D.抛物线
- 线段垂直平分线方程公式
- 圆C的方程(x-1)^2+y^2=9,点P为圆上一个动点,定点A坐标为(a,0),线段AP的垂直平分线与直线CP交于点M.
- 已知N(√5,0),P是圆M:(x+√5)2+y2=36(M为圆心)上一动点,线段PN的垂直平分线l交PM于Q点
- 过圆X^2+Y^2=4上在一点P作X轴的垂线PN,则线段PN的中点M的轨迹方程为
- 已知4x^2+7x-12=4,求-12x^2-21x的值.
- 自信,自立,自强对我们的成长各有什么重要意义
- 七年级地理同步训练答案
猜你喜欢