f(x)是定义在R上的以3为周期的偶函数,且f(2)=0.则方程f(x)=0在区间(0,6)内解的个数的最小值是( )
A. 5
B. 4
C. 3
D. 2
人气:444 ℃ 时间:2019-08-19 06:17:40
解答
∵f(x)是定义在R上的偶函数,且周期是3,f(2)=0,∴f(-2)=0,
∴f(5)=f(2)=0,f(1)=f(-2)=0,f(4)=f(1)=0.
即在区间(0,6)内,
f(2)=0,f(5)=0,f(1)=0,f(4)=0,
故答案:B
推荐
- 已知定义在R上的奇函数f(x)有最小正周期2,当x属于(0,1)时,f(x)=2^x/(4^x+1)
- 已知定义在R上的奇函数f(x)有最小正周期2,当x属于(0,1)时,f(x)=2^x/(4^x+1),求f(x)在[-1,1]上的解析式.
- 已知定义在R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=2x4x+1. (1)求f(1)和f(-1)的值; (2)求f(x)在[-1,1]上的解析式.
- 已知f(x)是定义在R上的奇函数,又是周期为2的周期函数,当x∈[0,1)时,f(x)=2x-1,则f(log0.56)的值为 _ .
- 已知f(x)是定义在R上且以3为周期的奇函数,当x∈(0,3/2)时,f(x)=ln(x²-x+1),
- 一又七分之三乘以括号负五分之二
- 混凝土搅拌车容积是什么概念?
- 某商品的售价是150元,商家售出一件这种商品可获利润是进价的10%~20%那么进价的范围是什么?
猜你喜欢