数列(an)的通项an=n(cos(nπ)/3-sin(nπ)/3),求s10
人气:232 ℃ 时间:2020-04-01 23:19:02
解答
∵an=n[cos(nπ)/3-sin(nπ)/3]=n ×cos(2π/3)n ∵n取1到n时,cos(2π/3)n的取值依次为-1/2,-1/2,1,-1/2,-1/2,1,…… ∴S10=-1/2×(1+2+4+5+7+8+10)+3+6+9 =-1/2×(1+2+3+4+5+6+7+8+9+10)+3/2×(3+6+9) =-1/2×10×11×21/6+3/2×154 =38.5
推荐
- 数列an=n^2((cos(nπ/3))^2-(sin(nπ/3))^2)
- 数列an满足a1=1,a2=2,a(n+2)=[1+cos^2(nπ/2)]an+sin^2(nπ/2)],n=1.2.3.求an的通项公式
- 数列{an}满足a1=1,a2=2,a(n+2)=(1+cos(nπ/2)^2)an+sin(nπ/2)^2,n=1,2,3,……
- 数列{an}的通项an=n2(cos2nπ3-sin2nπ3),其前n项和为Sn,则S30为( ) A.470 B.490 C.495 D.510
- 数列an的通项an=n²(cos²nπ/3-sin²nπ/3) 前n项和为Sn
- 初二《端午的鸭蛋》中袁枚的古文翻译~急要
- thanksss!设数列{an}的前n项和为sn,已知a1=a,an+1=sn+3^n,n∈N* (1)设bn=sn-3^n,求数列{bn}
- 英语作文母亲生病了我没能参加好友的生日聚会道
猜你喜欢