求方程dy/dx=y/(x+y^3)的通解
人气:114 ℃ 时间:2020-01-27 22:31:44
解答
dy/dx=y/(x+y^3)
dx/dy=x/y+y²
即
dx/dy-1/y ·x=y²
所以
x=e^[-∫(-1/y)dy] (∫y²e^[∫(-1/y)dy]dy+c)
=y (∫y²/y dy+c)
=y(∫ydy+c)
=y(y²/2+c)
=cy+1/2 y³
推荐
猜你喜欢
- x+y=1,则代数式½x²+xy+½y²的值是什么
- 15%相当于25%的( )%
- 若cos(pai+a)=-1/3,那么sin(3pai/2-a)=
- 在语文课程总目标中为什么要强调课外阅读,并且规定九年课外阅读总量应在400万字以
- 在三角形ABC中,角ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.试探究:当三角形ABC满足什么条件时,CF垂直于BC(点C、FC重合除外)?画出相应图形,并说明理由
- 过氧根和超氧根的计算
- zyz/where the skies are blue ,to see you once again .
- 原电池正负极与电解池正负极一样吗?