> 数学 >
直线y=x+m和椭圆x^2/4+y^2=1相交与A、B两点 求:线段AB的垂直平分线在x轴上的截距的取值范围
人气:103 ℃ 时间:2020-02-04 22:16:21
解答
联立直线方程y=x+m,椭圆方程x^2/4+y^2=1,
得出A、B两点的坐标 :(x1,y1),(x2,y2).
则:线段AB的中点坐标为( (x1+x2)/2,(y1+y2)/2 ).
将y=x+m代入x^2/4+y^2=1,得:5/4x^2+2mx+m^2-1=0,
x1+x2=-8m/5 .所以 y1+y2=x1+m=x2+m=2m/5.
且(2m)^2-4*5/4*(m^2-1)=-m^2+5>0,
所以 m^2
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版