> 数学 >
设a≥0,f(x)=x-1-(lnx)^2+2alnx (x>0).令F(x)=xf'(x),讨论F(x)在(0,正无穷)内的单调区间为
人气:441 ℃ 时间:2020-05-12 14:59:00
解答
f'(x)=1-(2/x)*lnx+2a/x(x>0)
所以F(x)=xf'(x)=x+2a-2lnx(x>0)
所以F'(x)=1-(2/x)=0得x=2
当x∈(0,2)时,F'(x)
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版