f(x)=sin(2x+φ) φ是 实数f(x)≤f(π/6)的绝对值x属于R恒成立且f(π/2)>f(π)则f(x)单调递增区间.
我的疑问是 实数f(x)≤f(π/6)的绝对值x属于R恒成立 意思不是f(x)≤后一个式子的最小值麽,那不就应该是f(π/6)的绝对值=0吗,为什么等于正负一啊
人气:158 ℃ 时间:2020-10-01 18:41:21
解答
f(x)是个正弦函数,所以f(x)的值是在-1≤sin(2x+φ)≤1的.所以sin(2x+φ)≤1,要x取任何值,sin(2x+φ)都不大于某个数k的绝对值,那么这个k的绝对值就不能小于1.所以当f(π/6)是正负1时,f(π/6)的绝对值=1,那么f(x...
推荐
- f(x)=sin(2x+φ) φ是 实数f(x)≤f(π/6)的绝对值x属于R恒成立且f(π/2)>f(π)则f(x)单调递增区间
- 已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≦|f(π/6)|对于x属于R恒成立,且f(π/2)>f(π),则f(x)的单调递增区间是……
- 已知f(x)=sin(2x+α),f(x)小于等于f(Л/6)的绝对值在R上恒成立,f(Л/2)>f(Л),则f(x)的单调增区间是.
- 设F(X)=X^3+X,X∈R,当0≤θ≤π\2时,F(m*sinθ)+F(1-m)>0恒成立,则实数m的取值范围?
- 如果x-2的绝对值+x+5的绝对值>a,对于任意x的实数恒成立,则实数a的取值范围是好多
- f(x)=sin(2x+φ) φ是 实数f(x)≤f(π/6)的绝对值x属于R恒成立且f(π/2)>f(π)则f(x)单调递增区间.
- △abc是等腰三角形,ab=ac,∠a=36°,bd平分∠abc交ac于点d,试判断点d是否是ac的黄金分割点?
- Weit und breit ist kein schaefer zu sehen.远近都不见牧羊人的踪影.
猜你喜欢