已知幂函数y=f(x)经过点(2,1/8),试解关于x的不等式f(3x+2)+f(2x-4)>0
人气:410 ℃ 时间:2019-08-21 21:50:29
解答
f(x)=x^n
1/8=2^n
n=-3
该函数为奇函数,且在(0,+∞)为减函数,在(-∞,0)为减函数
f(3x+2)+f(2x-4)>0可化为:f(3x+2)>f(4-2x)
(1)x∈(-∞,-2/3),3x+2<0,4-2x>0
f(3x+2)<0,f(4-2x)>0,不等式不成立.
(2)x∈(-2/3,2),3x+2>0,4-2x>0
3x+2<4-2x 解得:x<2/5,即x∈(-2/3,2/5)时,不等式成立
(3)x∈(2,+∞),3x+2>0,4-2x<0
f(3x+2)>0,f(4-2x)<0,不等式成立
综上,关于x的不等式f(3x+2)+f(2x-4)>0的解集是:
(-2/3,2/5)∪(2,+∞)
推荐
- 设幂函数f(x)的图像过点P(3,4次跟下27),幂函数g(x)的图像过点Q(-8,-2),求不等式f(x)
- 已知幂函数y=f(x)和y=g(x)的图像分别经过点(3,9)和(8,2),那么不等式f(x)>g(x)的解集是
- 已知幂函数f(x)=xa的图象过点(1/2,22),则不等式f(|x|)≤2的解集是_.
- 已知函数f(x)=-3x^2+a(6-a)x+b.(1)解关于a的不等式f(1)?0;(2)当不等式f(x)?0的解集为(-1,3)时,
- 已知幂函数y=f(x)的图象过点(根号2,2根号2)则不等式f(x+1)+f(2x)
- 有含盐10%的盐水50kg,现在要使含盐达到20%,需要加盐多少千克?
- 关于类比手法的作文
- 钻孔桩基础和摩擦桩基础的区别
猜你喜欢