A,B为n阶实对称矩阵,且对于任意n维向量X,都有XTAX=XTBX,证明A=B
人气:245 ℃ 时间:2020-05-17 04:00:23
解答
A,B为n阶实对称矩阵,若对于任意n维向量X,都有XTAX=XTBX,则特别的,对于单位坐标向量组e1,e2,...,en也有eiTAei=eiTBei,(i=1,2,...,n)所以 (e1,e2,...,en)TA(e1,e2,...,en)= (e1,e2,...,en)TB(e1,e2,...,en)即ETAE=ET...
推荐
- 设A是一个实对称矩阵,且 ,试证:必有实n维向量X,使XTAX
- 已知A是n阶实对称矩阵,对任一的n维向量X,都有X’(X的转置)AX=0,证明A=0.
- 证明:A是反对称矩阵,当且仅当对任一个n维向量X,有X'AX=0.
- 设A为n阶实矩阵,证明:若对于任意n维实列向量a,有a^TAa=0.则A为反对称矩阵 求问怎么证明
- A是n阶矩阵,α1,α2……αn是n维列向量,αn≠0,Aα1=α2,……,Aαn-1=αn,Aα
- 我喜欢家务劳动了 作文怎么写?
- 质点在空气中无初速自由下落时,在速度不大的情况下,阻力F的大小
- Fill in the blanks with the simple present tense.(用一般现在时完成下列句子)
猜你喜欢