令x=x,y=
1 |
x |
1 |
x |
1 |
x |
(2)∵x>1时,f(x)<0,设任意0<x1<x2,则
x2 |
x1 |
f(x2)-f(x1)=f(x2)+f(
1 |
x1 |
x2 |
x1 |
∴f(x2)<f(x1),
∴f(x)在定义域内为减函数;
(3)∵f(
1 |
2 |
1 |
x |
∴-f(2)=f(
1 |
2 |
∴f(2)=-1,即有f(2)+f(2)=-2,
∴f(2)+f(5-x)≥-2可化为f(2)+f(5-x)≥f(2)+f(2),
即f(5-x)≥f(2),又f(x)在定义域内为减函数,
∴0<5-x≤2,解得3≤x<5.
∴原不等式的解集为:{x|3≤x<5}.