设正数a1,a2,a3,···an成等差数列,求证:1/(根号a1+根号a2)+1/(根号a2+根号a3)+···+1/(根号an+a(n-1)
==n/(根号a1+a(n+1)
人气:144 ℃ 时间:2019-09-02 09:34:39
解答
证明,假设等差数列的公差为d.因为1/(根号a1 + 根号a2)= (根号a2 - 根号a1) / (a2-a1)= (根号a2 - 根号a1) / d同理可得1/(根号a2 + 根号a3)= (根号a3 - 根号a2) / d所以类似的有1/(根号a1+根号a2)+1/(根号a2+根号a3)+...
推荐
- 设f(x)=x3,等差数列{an}中a3=7,a1+a2+a3=12,记Sn=f(三次根号(an+1)),
- 设f(x)=x3,等差数列{an}中a3=7,a1+a2+a3=12,记Sn=f(三次根号(an+1)),令bn=anSn,数列{1/bn}的
- 在正项数列an中Sn=1/(根号a1+根号a2)+1/(根号a2+根号a3)+...+1/(根号an+根号an+1)
- 已知数列{an}是等差数列a1=1,a1+a2+a3+…a10=35,令bn=根号an开n次方,当n>=3时,求证bn>b(n+1)
- 已知正项数列{an},{bn}满足:a1=3,a2=6,{bn}是等差数列,且对任意正整数n,都有bn,根号an,bn+1成等比数
- That book is mine 的汉语意思
- 一个词形容衡山
- 会英语的翻译一下meet in equilibrium
猜你喜欢