设A是复数域C上一个n阶矩阵
证明:存在C上n阶可逆矩阵P使得 P^-1AP=r1 a12 .a1n
0 a22 .a2n
.
0 an2 .ann
人气:144 ℃ 时间:2020-04-16 04:02:18
解答
设p1是A的属于特征值r1的特征向量将p1扩充为C^n的一组基 p1,p2,...,pn则 P=(p1,p2,...,pn) 可逆且 AP=(Ap1,Ap2,...,Apn)=(r1p1,Ap2,...,Apn)设 APj=∑aijpi,j=2,3,...,n则 AP=(p1,p2,...,pn)BB=r1 a12 .a1n0 a22 .a2...
推荐
- 关于矩阵复数域上的证明,会追加1-2倍的分
- 若存在c属于C(复数域)使得数值矩阵A(c)的行列式detA(c)=0,则A(x)不可逆
- 设矩阵A,B属于复数域上的n维矩阵,A,B可交换,即AB=BA,证明A的特征子空间一定是B的不变子空间
- 复数域上的矩阵AB-BA=A,求证A仅有零特征值
- 就是那道复数域上的矩阵的证明那道
- 爱如茉莉 练习
- 为定点放羊,李大伯给每只羊都栓了5米长的绳子,另一头顶在草地上,每两个铁钉应距多少米
- 25.构成DNA分子的碱基数量之比,各种生物一般都一样的是 ( )
猜你喜欢