> 数学 >
已知x^2-3x+1=0,求(x^3+4)/(x^4+8)的值 一道分式初步的题
人气:467 ℃ 时间:2020-10-01 21:47:17
解答
(x^3+4)/(x^4+8)=(x³-3x²+x+3x²-x+4)/[(x²)²+8]=[x(x²-3x+1)+3x²-9x+3+8x+1]/[(3x-1)²+8]=[3(x²-3x+1)+8x+1]/(9x²-6x+1+9)=(8x+1)/(9x²-27x+9+21x+1)=(...然后拿(x^3+4)/(x^4+8)=(x³-3x²+x+3x²-x+4)/[(x²)²+8]=[x(x²-3x+1)+3x²-9x+3+8x+1]/[(3x-1)²+8]=[3(x²-3x+1)+8x+1]/(9x²-6x+1+8)=(8x+1)/(9x²-27x+9+21x)=(8x+1)/(21x) 我也没有办法了。我也算到这里了,你这叫我咋办啊(x^3+4)/(x^4+8)=(x³+1+3)/(x^4-1+9)=[(x+1)(x²-x+1)+3]/[(x²+1)(x²-1)+9]=[(x+1)(x²-3x+1+2x)+3]/[3x*(x²-3x+1+3x-2)+9]=(2x²+2x+3)/(9x²-6x+9)=(2x²-6x+2+8x+1)/(9x²-27x+9+21x)=(8x+1)/(21x)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版