>
数学
>
如图,在等边三角形ABC中,BO,CO分别平分∠ABC,∠ACB,OE∥AB,OF∥AC,试说明BE=EF=FC.
人气:263 ℃ 时间:2019-10-10 00:39:23
解答
证明:∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,
∵OE∥AB,OF∥AC,
∴∠OEF=∠ABC=60°,∠OFE=∠ACF=60°,
∴∠OEF=∠OFE,
∴∠EOF=60°,
∴△OEF为等边三角形,
∴OE=OF=EF,
∵BO,CO分别平分∠ABC,∠ACB,
∴∠ABO=∠OBE,∠ACO=∠OCF,
∵OE∥AB,OF∥AC,
∴∠ABO=∠BOE,∠ACO=∠COF,
∴∠OBE=∠BOE,∠OCF=∠COF,
∴OE=BE,OF=CF,
∴BE=EF=FC.
推荐
如图,已知BO,CO分别是角ABC和角ACB的平分线,OE//AB,OF//AC,试比较三角形OEF的周长与线段BC的长
如图已知BO、CO分别是角ABC和角ACB的平分线,OE平行AB,OF平行AC如果已知BC的长为a,你能知道三角形OEF的周长吗
如图,在等边三角形ABC中,BO,CO分别平分∠ABC,∠ACB,OE∥AB,OF∥AC,试说明BE=EF=FC.
如图,在等边三角形ABC中,BO,CO分别平分∠ABC,∠ACB,OE∥AB,OF∥AC,试说明BE=EF=FC.
如图,△ABC中,角平分线BO与CO的相交点O,OE∥AB,OF∥AC,△OEF的周长=10,求BC的长.
高二数学数列试卷
闻一多先生片段描写200字
翻译have you learned about other countries in schooi?which one is the most i
猜你喜欢
任何两个质数之和都不会是质数._. (判断对错)
先化简,再求值:[(x-3y)(x+3y)+x(x+2y³)-2(-x)²]÷3y²,其中x=1,y=3
high的形容词或副词是什么
仿照例句,为某处旅游胜地写一广告语.
已知函数y=根号下25-4x^2(x∈[0,5/2]),求它的反函数
you should try to a__ going alone
一个两位数,十位上的数与个位上的数字只和为9,如果将个位数字与十位数字对调后所得的新数比原数大9
《信客》选自
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版