(1)由于函数f(x)=x2-4x-4 的对称轴为 x=2,当2<t时,函数f(x)在闭区间[t,t+1]上单调递增,
故函数的最小值g(t)=ft)=t2-4t-4.
当t≤2≤t+1,即 1≤t≤2时,
函数的最小值g(t)=f2)=-8.
当t+1<2,即t<1时,函数f(x)在闭区间[t,t+1]上单调递减,
故函数的最小值g(t)=ft+1)=t2-2t-7.
综上可得,g(t)=
|
(2)作出g(t)的图象,如图所示:
数形结合可得,g(t)的最小值为-8.
(1)由于函数f(x)=x2-4x-4 的对称轴为 x=2,
|