x^2/a^2+y^2/b^2=1(a>b>0),F1,F2分别为椭圆上的左右焦点,A为椭圆上的上顶点,直线AF2交椭圆于另一点B
1)若∠F1AB=90°,求椭圆的离心率
2)若向量AF2=2向量F2B,向量AF1*向量AB=3/2,求椭圆的方程
人气:165 ℃ 时间:2019-08-19 19:36:30
解答
1) 因为∠F1AB=90°,所以,|AF1|^2+|AF2|^2=|F1F2|^2,
即 2a^2=(2c)^2,所以,e=c/a=√2/2.
2) A(0,b),F2(c,0),F1(-c,0),设B(x,y),
则 AF2=(c,-b),F2B=(x-c,y),
由AF2=2F2B得 c=2(x-c),-b=2y,
所以B(3c/2,-b/2)
代入椭圆方程可得 9c^2/(4a^2)+b^2/(4b^2)=1 (1)
又AF1*AB=(-c,-b)*(3c/2,-3b/2)=-3c^2/2+3b^2/2=3/2 (2)
所以,由(1)(2)及 a^2=b^2+c^2可解得 a^2=3,b^2=2,c^2=1,
因此,椭圆方程为 x^2/3+y^2/2=1.
推荐
- 如图所示,F1,F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右两个焦点,A,B为两个顶点,该椭圆的离心率为√5/5,△ABO的面积为√5,(1)作与AB平行的直线L交椭圆于P、Q两点,丨PQ丨=9√5/5,求直线L
- 已知椭圆x^2/a^2+y^2/b^2=1(a>b>0).F1、F2分别为椭圆的直线左右焦点,A为椭圆上的顶点,直线AF2交椭
- F1 F2分别为椭圆C:x^2/a^2+y^2/b^2=1 (a>b>0)的左右两个焦点,A是椭圆c的顶点,B是直线AF2与椭圆c的
- 已知椭圆C:X^2/a^2+y^2/b^2=1 (a>b>0)的上顶点为A,左右焦点为F1,F2,且椭圆过P(4/3,b/3)
- 椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左,右顶点分别是A,B,左右焦点分别是F1,F2,若AF1,F1F2,F1B 成等比数列,则离心率为
- 如果 3 *7=25 ,则该数为几进制 是怎么算的
- 松树的叶子是什么形状的?
- 将固体NH4I置于密闭容器中,在一定温度下发生下列反应,
猜你喜欢