![](http://hiphotos.baidu.com/zhidao/pic/item/8cb1cb1349540923997b0cfc9158d109b3de4925.jpg)
∵四边形ABCD是等腰梯形,且AC与BD相交于O,
∴AC=BD,
在△CAB和△DBA中,
|
∴△CAB≌△DBA(SSS),
∴∠CAB=∠DBA,
同理可得出:∠ACD=∠BDC,
∴AO=BO,CO=DO,
∵∠ACD=60°,
∴△OCD与△OAB均为等边三角形.
∵S是OD的中点,
∴CS⊥DO,
在Rt△BSC中,Q为BC中点,SQ是斜边BC的中线,
∴SQ=
1 |
2 |
同理BP⊥AC,
在Rt△BPC中,PQ=
1 |
2 |
又∵SP是△OAD的中位线,
∴SP=
1 |
2 |
1 |
2 |
∴SP=PQ=SQ.
故△SPQ为等边三角形.