证明:如果用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽到的概率都等于n/N
指定一个个体,它被抽到的概率:
P=C(N-1,n-1)/C(N,n)
={(N-1)!/[(n-1)!*(N-n)!]*[n!*(N-n)!]/N!
=n/N
请问为什么 指定一个个体,它被抽到的概率:
P=C(N-1,n-1)/C(N,n)
人气:306 ℃ 时间:2020-01-29 15:38:13
解答
同学是这样的.你这个证明的题目的意思是从N个里面抽取n个.打个比方从12个里面抽6个.是一次拿走6个,而不是一个一个拿.证题中则是这个意思.是一个次拿走n个.然后证明的角度是从一个一个拿走这样去证明的.两者是等效的....
推荐
猜你喜欢
- 六年级数学同步训练下册P16页第三题怎么做
- 二阶微分方程y^3y''+1=0 当x=1 时,y=1,y'=0
- 自然界中某种因素的变化会引起其他一系列因素的变化,例如青藏高原积雪面积减小,会引起该地域自然环境的连锁变化.这种变化包括( ) ①地表温度年变化增大 ②风化加速导致岩崩
- 十字相乘法 因式分解 a^3+4a^2+4a
- 四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2
- 有17个苹果,分别分成二分之一,三分之一和九分之一,怎么分,
- (传球概率等)甲.乙.丙.丁四个人进行传球练习,每次球从一个人的手中传入其余三个人中的任意一个人的手
- A(-2,-3),B(2,1),C(1,4),D(-1,-4),判断AB向量CD向量是否共线