已知数列{an}的前n项和Sn=2an-1,数列{bn}中,bn=(3n-2)an 求数列{an}的通项公式及(bn)前n项和Tn
人气:216 ℃ 时间:2019-10-10 04:34:25
解答
n≧2 (n∈N+)时:
an=Sn-S(n-1)
=2an-1-(2a(n-1)-1)
=2an-2a(n-1)
整理得,an=2a(n-1),即an/a(n-1)=2
a1=S1,S1=2a1-1,所以a1=1
所以数列{an}是以首项a1=1,公比为2的等比数列
所以an=2^(n-1) (n∈N+)
又bn=(3n-2)an
所以bn=(3n-2)2^(n-1)
Tn=b1+b2+…+bn
=1×1+4×2+7×4+…+(3n-2)2^(n-1)
2Tn=1×2+4×4+7×8+…+(3n-2)2^n
Tn-2Tn=1+3×2+3×4+…+3×2^(n-1)-(3n-2)2^n
=1+3×(2+4+…+2^(n-1))-(3n-2)2^n
=1+3×(2^n-2)-(3n-2)2^n=-Tn
整理,得:
Tn=(3n-5)2^n +5(n∈N+)
推荐
- 设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3^n,n∈N+.设bn=Sn+3n,求数列{bn}的通项公式
- 设数列An的前n项和为Sn,已知a1=a,an+1=Sn+3n设Bn=Sn-3n次方,求数列Bn的通项公式
- 等差数列{an},{bn}的前n项和分别为Sn和Tn,若SnTn=2n/3n+1,则limn→∞anbn=_.
- 已知两个数列﹛an﹜,﹛bn﹜,满足bn=3^n*an,且数列﹛bn﹜的前n项和为Sn=3n-2,则数列﹛an﹜的通项公式为
- 已知数列{bn}的前n项和为Sn=【(3n^2)-n】/2,(1)求数列{bn}的通项公式 (2)已知数列{an}满足:a(n+1)=2an+3
- 已知线段AB、CD相交于O,且AB=2,CD=1,角AOC=60度,证:AC+BD≥√3
- 理想气体的活度系数和逸度系数为什么是1
- 他们的运动鞋 英语翻译
猜你喜欢