我是高数菜鸟,请教一个关于极限和界限的定理证明题.有些疑问请求指教
定理 若数列{ xn } 有极限,则{ xn }有界(n是下标)
证明要证明:存在正数M,使得所有xn都满足不等式
|xn| ≤ M (n=1,2,………)
设Lim xn =a 则由定义知道,对ε=1,存在正整数N,使得当n>N 时,有|xn -a| < 1,
n→∞
从而|xn|=|(xn-a)+a| ≤|(xn-a) |+|a|
取M=max{ 1+|a|, |x1|,|x2|,|x3|,…|xN|}则不等式|xn| ≤ M 对一切正整数n 成立,即有 界 { xn }有界.
疑问1:ε一般情况下,不是无穷小吗,这里怎么设定为1?
疑问2:M=max{ 1+|a|, |x1|,|x2|,|x3|,…|xN|}这个集合怎么来的?什么意思?为什么这样设?
更正:从而|xn|=|(xn-a)+a| ≤|(xn-a) |+|a| < 1+|a|漏写< 1+|a| 了。
整个证明过程中,没发现设定为1 有什么作用。如果ε不设定为1,则xn -a|
人气:377 ℃ 时间:2020-04-12 04:54:12
解答
ε为任意大于0的数 可以任取
当人 你可以带着ε 也可以自己去取 都一样 因为极限定义的ε是任取 既然极限存在 我们随便取一个1 也满足不等式
M=max{ 1+|a|,|x1|,|x2|,|x3|,… |xN|} 这是取最大的集合 也就是 取 所有Xn都满足的集合
这样不等式|xn| ≤ M 对一切正整数n 成立,即有 界 { xn }有界
推荐
猜你喜欢
- 2,5,10,17……的通项公式是什么
- 数学怎么在最后一星期提高20分?
- 煤气灶出来的火是黄火好还是蓝火好?如果出来的是黄火,说明煤气有问题还是灶有问题?
- {int x=1,a=0,b=0;switch(x){ case 0:b++; case 1:a++; case 2:a++;b++;} printf("a=%db=%d\n",a,b);
- day off与vacation holiday的区别
- .steven took part in five basketball matches,()()()()was in March this year
- 已知log2的3次方=m 求log6的2次方的值
- 一个数分别以2,3,5都余1,这个数最小是多少?100之内有几个这样的数?