> 数学 >
利用极限夹逼准则证明lim n→∞[1/(根号下n^2+1)+1/(根号下n^2+2).+1/(根号下n^2+n)]=1
人气:417 ℃ 时间:2020-05-25 02:48:37
解答
因为[1/(根号下n^2+1)+1/(根号下n^2+2).+1/(根号下n^2+n)]小于n/(根号下n^2+1)+1 [1/(根号下n^2+1)+1/(根号下n^2+2).+1/(根号下n^2+n)]大于n/(根号下n^2+n) 因为n/(根号下n^2+1)+1 的极限为1 n/(根号下n^2+n)的极限也为1 所以lim n→∞[1/(根号下n^2+1)+1/(根号下n^2+2).+1/(根号下n^2+n)]=1
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版