求微分方程dy/dx-ycosx=x^2*e^sinx满足初始条件y丨(x=0)=-2的特解
人气:152 ℃ 时间:2019-09-26 00:19:48
解答
求解下列微分方程满足所给初值条件的特解(x2-y2)dx-xydy=0, 当x=1时 y=2.
原方程:(x2-y2)dx-xydy=0./
在这里,dx、dy前的池数都是二次齐次函数,作换元,令y=tx,则dy=tdx+xdt.
将y、dy代入原方程,整理得,x*dx-[t/(1-2t^2)]dt=0.
此是分离变量可解的微分方程.用分离变量法解.
推荐
- 求微分方程dy/dx+y/x=sinx/x满足初始条件y | (x=n)=1的特解
- 求微分方程的特解 dy/dx+y/x=sinx/x x=3.14就是派 那个 y=1
- 求微分方程dy/dx+y/x=sinx/x,求满足初始条件y | (x=n)=1的特解
- 微分方程dy/dx=1+sinx满足初始条件y(0)=2的特解是什么
- 求下列微分方程满足所给初始条件的特解:dy/dx+y/x=sinx/x,yⅠ(x=派) =1.即
- 左边一个竖心旁右边一个凡字怎么读
- 一正方形玻璃,长.宽截去6cm,比原来少324平方厘米,原来面积多少?
- 数列1,1+2,1+2+2∧2,……,(1+2+2∧2+……+2∧(n-1)),……的前n项的和等于多少?
猜你喜欢