> 数学 >
计算题999…99 × 999…99 +1999…99
计算999…99 × 999…99 +1999…99 后所得的末尾有( )个零.
(1992个)(1992个)(1992个)
人气:478 ℃ 时间:2020-03-24 00:54:26
解答
计算999…99 × 999…99 +1999…99 后所得的末尾有( 1992×2 = 3984 )个零.(1992个)(1992个)(1992个)将“000...0000(1992个0)”缩写为“A”,则原式为:999…99 × 999…99 +1999…99 =(1A -1)(1A -1) +2...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版