
∵∠ACB=90°,∠BAC=30°,AB=4,
∴BC=2,
则CH=
3 |
连接EP,因为CD=DP,BD=DE,得▱PBCE.则CE=PB,EP=CB=2.
(1)SAPCE=(CE+AP)CH÷2=AB•CH÷2=2
3 |
四边形PCEA的面积=
1 |
2 |
1 |
2 |
3 |
(2)当AP=2时,BP=EC=AP,则AP=EC,且AP∥EC,
得▱PCEA,∵AP=2=PC=EC,且EC∥AP;
(3)当AP=3时,P、H重合,EC∥AP,∠CPA=90°,
AP=3≠1=PB=EC,得直角梯形PCEA;
当AP=1时,△APE是直角三角形,∠EAP=90°,
EC∥AP,AP=1≠3=PB=EC,得直角梯形PCEA.