已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是( )
A. (0,2)
B. (0,8)
C. (2,8)
D. (-∞,0)
人气:153 ℃ 时间:2019-08-18 03:17:14
解答
当m≤0时,当x接近+∞时,函数f(x)=2mx2-2(4-m)x+1与g(x)=mx均为负值,显然不成立当x=0时,因f(0)=1>0当m>0时,若-b2a=4-m2m≥0,即0<m≤4时结论显然成立;若-b2a=4-m2m<0,时只要△=4(4-m)2-8m=4(m-...
推荐
- 已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是( ) A.(0,2) B.(0,8) C.(2,8) D.(-∞,0)
- 已知函数f(x)=2mx^2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正数,则实数m的取值
- 已知函数f(x)=2x2+(4-m)x+4-m,g(x)=mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正数,则实数m的取值范围是( ) A.[-4,4] B.(-4,4) C.(-∞,4) D.(-∞,-4)
- 已知函数f(x)=2mx²-2(4-m)x+1,g(x)=mx,对任一实数x,f(x)与g(x)至少有一个为正数,求m的取值范围.
- 已知函数f(x)=2mx²-2(4-m)x+1,g(x)=mx,对任一实数x,f(x)与g(x)至少有一个为正数,
- (1)sin45°-cos60°+tan60°=
- 硫酸亚铁铵的制备为什么不能以硫酸亚铁的量计算产率
- 在地球上能不能拍摄火星凌日天文奇观照片
猜你喜欢