f(x)=ax²+bx+c
则,f'(x)=2ax+b
那么,在P(xo,f(xo))处切线的斜率就是k=f'(xo)=2axo+b
已知切线的倾斜角是[0,π/4]
所以,k=tanα∈[0,1]
所以,2axo+b∈[0,1]
===> 0≤2axo+b≤1
===> 0≤xo+(b/2a)≤1/(2a)
那么,点P到对称轴x=-b/2a的距离就是|xo-(-b/2a)|=|xo+(b/2a)|∈[0,1/(2a)].对称轴x=-b/2a怎么得的这是初中抛物线中最基本的概念啊!二次函数y=ax^2+bx+c(a≠0)的对称轴为x=-b/2a!!