> 数学 >
大一高数微积分题,
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)=0,证明:在开区间(a,b)内至少存在一点ξ,使得f(ξ)的导+f(ξ)=0
人气:358 ℃ 时间:2020-05-21 10:27:04
解答
设g(x)=f(x)*e^x,g'(x)=f'(x)*e^x+f(x)*e^x=[f'(x)+f(x)]*e^x
则g(x)在闭区间[a,b]上连续,在开区间(a,b)内可导
且g(a)=f(a)*e^a=0,g(b)=f(b)*e^b=0,
由拉格朗日中值定理知,
存在ξ,ξ∈(a,b),使得g'(ξ)=0.
即[f'(ξ)+f(ξ)]*e^ξ=0,而e^ξ>0
所以f'(ξ)+f(ξ)=0.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版