f′(x)=x−1+
1 |
x |
当a=
3 |
2 |
1 |
x |
5 |
2 |
2x2−5x+2 |
2x |
令f′(x)=0,解得x=
1 |
2 |
x | (0,
|
| (
| 2 | (2,+∞) | ||||||
f′(x) | + | 0 | - | 0 | + | ||||||
f(x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 等单调递增 |
1 |
2 |
1 |
2 |
1 |
8 |
函数f(x)在x=2处取得极小值f(2)=ln2-
1 |
2 |
(II)f′(x)=x+
1 |
x |
1 |
x |
10 |
3 |
(i)当1+a≤2,即a≤1时,x∈(1,3),f′(x)>0,函数f(x)在(1,3)是增函数,
∀x∈(1,3),f(x)>f(1)=0恒成立;
(ii)当1+a≥
10 |
3 |
7 |
3 |
∀x∈(1,3),f(x)<f(1)=0恒成立,不合题意,应舍去;
(iii)当2<1+a<
10 |
3 |
7 |
3 |
综上,a的取值范围是(-∞,1).