设f(x+y,xy)=x²+y²+xy,则df(x,y)=
人气:252 ℃ 时间:2020-06-24 04:25:26
解答
f(x+y,xy)=x²+y²+xy
=x²+y²+2xy-xy
=(x+y)²-xy
f(x,y)=x²-y
df(x,y)/dx=2x
df(x,y)=2xdx
df(x,y)/dy=-1
df(x,y)=-dy
所以
df(x,y)==2xdx-dy
推荐
- 设f(x+y,xy)=x²+y²,则f(x,y)=(?).
- 设f(xy,x-y)=x²+y²,则f(x,y)=?
- 设x(x-1)-(x²-y)=-2 ,求(x²+y²)/2-xy的值
- 设 f(x,y)=∫0积到√xy〖e^(〖-2t〗^2 ) dt(x>0,y>0) 〗,求df(x,y)
- 设(x-1)(y+1)=3,且xy(x-y)=4.求x²+y²
- 一元二次方程两根之差的公式是什么
- 已知函数fx=根号3cos(2分之派-2x)+2cos方x+2
- he earned through his sharp practice of selling his 'protection'这句话怎样翻译,through怎样理解..
猜你喜欢