已知P是抛物线 y^2=2x上的一个动点,过P作圆(x-3)^2+y^2=1 的切线,切点分别为M、N,
则/MN/ 的最小值是__________ 需说明详细过程
人气:433 ℃ 时间:2020-02-20 15:00:51
解答
可设点P(2a²,2a).易知,圆C:(x-3)²+y²=1的圆心C(3,0),半径r=1.设PC与MN交于点H,易知,⊿MCH∽⊿PCM∴MH∶PM=MC∶PC∴MH=PM/PC又PM²=PC²-1∴MN=2√[1-(1/PC²)]∴问题可化为求PC²的...
推荐
- 33.14、已知P是抛物线y∧2=2x上的一个动点,过P作圆(x-3) ∧2+y∧2=1的切线,切点分别为M、N,...
- 已知P是抛物线y²=2x上的一个动点,过点P作圆(x-3)+y²=1的切线,切点分别为M,N,则|MN|的最小值
- 已知圆N (X+2)平方+y平方=8和抛物线C y平方=2x 圆的切线和抛物线C 交与A B 当切线的斜率为1时 求AB的长
- 设p为抛物线y^2=2px上的动点,过点p作圆C (x-2p)^2+y^2=p^2的两条切线,切点分别为A和B,求四边形PACB的最小值
- 已知抛物线y^2=2x,有一个半径为1的圆,圆心在x轴上移动,问圆移动到什么位置时,圆与抛物线在交点处的切线互相垂直
- 1.polite(反义词)2.swim(现在分词)
- 化简((cos20°/sin20°)cos10°)+根号3(sin10°tan70°)-2cos40°
- 英语翻译
猜你喜欢