∴f(m)=
m2 |
m+2 |
n2 |
n+1 |
m2 |
m+2 |
(1−m)2 |
2−m |
4 |
m+2 |
1 |
2−m |
则f′(m)=
(6−m)(3m−2) |
(m2−4)2 |
令f′(m)=0,0≤m≤1,解得m=
2 |
3 |
当0≤m<
2 |
3 |
2 |
3 |
∴当m=
2 |
3 |
2 |
3 |
4 | ||
|
1 | ||
2−
|
1 |
4 |
故选:A.
m2 |
m+2 |
n2 |
n+1 |
1 |
4 |
4 |
15 |
1 |
8 |
1 |
3 |
m2 |
m+2 |
n2 |
n+1 |
m2 |
m+2 |
(1−m)2 |
2−m |
4 |
m+2 |
1 |
2−m |
(6−m)(3m−2) |
(m2−4)2 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
4 | ||
|
1 | ||
2−
|
1 |
4 |