> 数学 >
如图,在矩形ABCD中,已知AD=10,AB=8,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,求CE的长.
人气:283 ℃ 时间:2019-08-21 14:29:27
解答
∵四边形ABCD为矩形,
∴AD=BC=10,AB=CD=8,
∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,
∴AF=AD=10,EF=DE,
在Rt△ABF中,∵BF=
AF2−AB2
=6,
∴CF=BC-BF=10-6=4,
设CE=x,则DE=EF=8-x
在Rt△ECF中,∵CE2+FC2=EF2
∴x2+42=(8-x)2,解得x=3,
即CE=3.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版