如果f'(x)=sin x^2 ,y=f(2x/x-1),求dy/dx
人气:356 ℃ 时间:2020-01-29 10:52:30
解答
dy/dx = y'
= f'[ 2x / (x-1) ] * [ [ 2x / (x-1) ] '
= sin[ 2x / (x-1) ]² * -2 / (x-1)²
= -2 sin[ 2x / (x-1) ]² / (x-1)²
推荐
- 设f(x)为可导函数,求dy/dx,(1)y=f(sin^2x)+f(cos^2x)
- 设曲线f(x)在[0,1]上可导,且y=f(sin^2x)+f(cos^2x),求dy/dx
- 设f(x)可导,且f'(0=1,又y=f(x^2+sin^2x)+f(arctanx),求dy/dx /x=0
- 设f(x)可导,求dy/dx y=sin f(x²)
- 求曲线积分∫(x^2+y)dx-(x+sin^2y)dy,其中L是圆周y=根号下2x-x^2上由点(0,0)到(2,0)上一段
- 弓形面积公式
- current initiatives and recommendations 怎么翻译比较好
- 如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,若CD=6,则AF等于( ) A.43 B.33 C.42 D.8
猜你喜欢