设f(x)可导,且f'(0=1,又y=f(x^2+sin^2x)+f(arctanx),求dy/dx /x=0
人气:250 ℃ 时间:2019-12-10 02:06:42
解答
记g(x)=f(x^2+sin^2x)+f(arctanx)=y
g'(x)=f'(x^2+sin^2x)(2x+sin2x)+f'(arctanx)/(x2+1)
dy/dx|x=0,即g'(0)
代入得:g'(0)=1
推荐
- 设f(x)为可导函数,求dy/dx,(1)y=f(sin^2x)+f(cos^2x)
- 设曲线f(x)在[0,1]上可导,且y=f(sin^2x)+f(cos^2x),求dy/dx
- 设y=f[(3x-2)/(3x+2)]且f'(x)=arctanx^2,则dy/dx|x=0的值多少
- 如果f'(x)=sin x^2 ,y=f(2x/x-1),求dy/dx
- y=f[(x-1)/(x+1)],f'(x)=arctanx^2,求dy/dx,dy
- 说明方法:城墙顶上铺着方砖,十分平整,像很宽的马路,五六匹马可以并行.(对比说明,数字说明)
- 个人风采怎么写
- 比较H2SIO4,H2CO3,H2SO4酸性强弱
猜你喜欢