设 f(t)>0且是连续偶函数,又函数F(x)=∫|x-t|f(t)dt定积分上下限为-a、a,x∈[-a,a],讨论F`(x)的单调性.
人气:245 ℃ 时间:2019-09-29 03:25:52
解答
F(x)=积分(从--a到0)|x--t|f(t)dt+积分(从0到a)|x--t|f(t)dt 第一个做变量替换t==-y再用t代替y
=积分(从0到a)(|x--t|+|x+t|)f(t)dt 故F(x)是偶函数,只需考虑x位于【0,a】区间即可.
=积分(从0到x)(x--t+x+t)f(t)dt+积分(从x到a)(t--x+x+t)f(t)dt
=2x积分(从0到x)f(t)dt--积分(从a到x)2tf(t)dt,
于是F'(x)=2积分(从0到x)f(t)dt是【0,a】上的递增函数,由F'(x)是奇函数知道
F'(x)是【--a,a】上的递增函数.
推荐
- 设f(x)是闭区间[0,1]上的连续函数,且f(x)=[1/(1+x^2)]+x^2∫f(t)dt,求∫f(x)dx.定积分上限1,下限0.
- 设f(x)是连续函数,且满足∫[0,x]f(x-t)dt=e^(-2x)-1,求定积分∫[0,1]f(x)dx
- 若f(t)为连续函数且为奇函数,证明:F(X)=∫f(t)dt(上限是X下限是0)是偶函数
- 证明:若f(x)是奇函数,则f(t)dt在0到x上的定积分F(x)是偶函数
- f(t)是连续的奇函数,证明∫(0,x)f(t)dt是偶函数, f(t)为连续的偶函数,证明∫(0,x)f(t)dt为奇函数?
- 根毛细胞最大的特点是表皮细胞形成的什么?
- 如何提高数学做练习速读
- 观沧海中表现作者雄心壮志诗句
猜你喜欢