设f(x)是数域F上的2008次多项式,证明2009√2不可能是f(x)的根.在这里f(x)有可
设f(x)是数域F上的2008次多项式,证明2009√2不可能是f(x)的根.
在这里f(x)有可能是有理数,无理数,复数域多项式啊,怎么能判断(x∧2009-2,f(X))=1?
人气:143 ℃ 时间:2019-10-23 04:20:27
解答
这样的写法容易引起误解,建议写成2^(1/2009).
另外,对于一般的数域F,这个结论是不成立的,
例如F = Q(2^(1/2009)),f(x) = x^2008-2^(1/2009)x^2007.
原题应该是要求f(x)是有理系数多项式.
易见2^(1/2009)为g(x) = x^2009-2的根.
而由Eisenstein判别法,可知g(x)在有理数域上不可约.
若f(2^(1/2009)) = 0,则f(x)与g(x)有公共根,(f(x),g(x)) ≠ 1.
但g(x)在有理数域上不可约,又(f(x),g(x))为有理系数多项式,
因此(f(x),g(x)) = g(x),即g(x)整除f(x),与deg(f) = 2008 < 2009 = deg(g)矛盾.
推荐
- 设a是常数,证明多项式f(x)=x^3-3x+a在[01]上不可能有两个不同的根
- 整系数多项式f(x)满足f(2009)f(2010)=2011,请您证明f(x)=0没有整数根
- 设f(x)是实数域上的n(n大于等于2)次多项式,则f(x)可约是指f(x)存在实根.正确不
- 设f(x),g(x)和h(x)是实数域上的多项式,证明f(x)的平方=xg(x)平方+xh(x)平方,那么
- 证明,{x^3,x^3+x,x^2+1,x+1}是F3[X](数域F上一切次数=
- 求圆心在直线3x+2y=0上,并且与x轴的交点分别为(-2,0),(6,0)的圆的方程.
- 1.一辆越野车在沙漠中行驶32.5千米耗油5.2升.它要跨越的无人区总路程为1303千米,至少要准备多少升汽油?(得数保留整数)
- 住院时我很难过,怎么翻译?
猜你喜欢