有关z=f(x,y)是否可微的判断问题!
我知道有推论:若z=f(x,y)的偏导数在(a,b)点连续,则z=f(x,y)在(a,b)点可微.
1、若有题目,函数 z=f(x,y),判断在(0,0)处是否可微,能否这样做?
直接对x和y求偏导,得到两式,然后判断这两个式子在(0,0)是否连续,若都连续,则z=f(x,y)在(0,0)处是否可微.
2、请问是否要当z=f(x,y)对x和对y的偏导数都连续,z=f(x,y)才在(a,b)点可微?
老师不是这么做的,是求一个极限,那个极限我电脑上打不出,那个极限分子是 △z-ez/ex在(0,0)处值 - ez/ey 在(0,0)处值,分母是 根号下 △x 的平方 + △y 的平方 ,当△x——>0,△y——>0,时的极限,当极限为0,则全微分存在。难道只能这样做吗?用1中的不行吗?(以上,e 代表哪个倒过来的 e 的符号)
人气:478 ℃ 时间:2020-04-03 23:52:37
解答
结论“偏导连续则可微”在做题的时候用的并不多,除非两个偏导数的形式很简单,因为二元函数的连续性并不像一元函数那么容易判定.何况我们只是讨论一个点处的可微性,无需求出偏导函数判断函数F(x,y)在(x0,y0)处是否可...
推荐
- 设z=z(x,y)是由方程F(y/x,z/x)=0所决定的函数,则xδz/δx+yδzδy=( ).
- 高数 请问: y=f(x)在x.处连续,则z=f(x)在点p.(x.,y.)处连续 .这句话对
- 函数w=f(x,y,z),w对x的偏导与f对x的偏导有什么区别?
- 求limx[f(a+1/x)-f(a)],(x→∞)其中f可微
- 若(-1,-3)是z=f(x,y)的驻点,则f'x(-1,-3)=?
- 南辕北撤是什么意思啊
- 第一题 (-5/12)的2007次方 * (2.4)的2006次方等于
- 普通的换算单位题:4升=( )毫升=( )立方分米
猜你喜欢