证明下列恒等式:(1)、arctanx+arctan(1/x)=pi/2
人气:121 ℃ 时间:2019-09-02 01:02:23
解答
利用导数来证明,会比较简单一些.设f(x)=arctanx+arctan(1/x)则f'(x)=1/(1+x^2) + 1/[1+(1/x)^2] * (1/x)'=1/(1+x^2) + [-1/(1+x^2)]=0因此f(x)是一个常数,令x=1代入则f(x)=f(1)=arctan1+arctan1=pi/4 + pi/4 =pi/2证...
推荐
- 点样证明arctanx+arctan1/x=pi/2
- arctanx+arctan(1/x)=?已知x>0.
- 证明恒等式arctanx+arccotx=π/2 , f(x) = arctanx+arccotx, 则有f'(x) = 1/(1 + x^2) - 1/(1 + x^2) = 0,
- 证明恒等式:arctanx+arctan1/x=π/2(x>0)
- 证明arctanx+arctan1/x=兀/2 (x>0)
- 英语翻译:我去过一家店,那里菜的分量和菜单上的一样
- 一个圆形跑到长800米,甲每分钟跑160米,乙的速度是甲的二倍,乙在甲的前方100米 多长时间乙追上甲?
- 某物业公司准备向银行贷款10万元,借款1年后还本付息.甲银行贷款年利率6%,按年计息,乙银行贷款年利率5%,按季计息.试分析该公司应选择哪家银行贷款才合算?
猜你喜欢