> 数学 >
求证(a方/(b+c)+b方/(c+a)+c方/(a+b))大于等于(a+b+c)/2
有没有不用柯西不等式的方法啊?
人气:301 ℃ 时间:2020-02-04 04:12:56
解答
用柯西不等式
(a方/(b+c)+b方/(c+a)+c方/(a+b))*((b+c)+(c+a)+(a+b)≥(a+b+c)^2
即(a方/(b+c)+b方/(c+a)+c方/(a+b))*(2(a+b+c))≥(a+b+c)^2
(a方/(b+c)+b方/(c+a)+c方/(a+b))≥(a+b+c)/2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版