椭圆上有两点P、Q,O为坐标原点,且有直线OP,OQ的斜率满足kop×koq=-1/2 求线段PQ中点的轨迹方程.
提示:用点合法做.
人气:347 ℃ 时间:2020-03-26 03:18:06
解答
设参数方程 P(Acosa,Bsina)Q(Acosb,Bsinb) Kop=Btana/A Koq=Btanb/A B^2tanatanb/A^2=-1/2 PQ终点坐标(Acosa/2+Acosb/2,Bsina/2+Bsinb/2)x^2=A^2/4(cosa+cosb)^2 y^2=B^2/4(sina+sinb)^2
推荐
- 已知椭圆x^2/2+y^2=1,椭圆上有两点P.Q,O为原点,且有直线OP.OQ的斜率满足Kop*Koq=-1/2求线段PQ中点M轨迹
- 椭圆X^2/16+Y^2/4=1上有两点P、Q,O是原点,若OP、OQ斜率之积为-1/4,求证|OP|^2+|OQ|^2为定值.
- 椭圆X^2/25+y^2/5=1上有两点P,Q.O为坐标原点,且直线OP,OQ斜率之积为1/5,求证OP^2+OQ^2为定值
- 椭圆x ^ 2/16+y ^ 2/4=1上有两点P,Q,O为坐标原点,连结OP,OQ,若Kop*kOQ=-1/4,
- 直线l与椭圆x^2/4+y^2=1交于p,q两点,已知l的斜率为1,求pq中点轨迹方程
- 解方程:5y+1-y=3/2-2y-1/2 方程-x=x的解为( )
- 苏教版小学语文1-6年级的古诗有哪些
- 照样子给下列汉字加部首,组成新字后再组词
猜你喜欢