椭圆上有两点P、Q,O为坐标原点,且有直线OP,OQ的斜率满足kop×koq=-1/2 求线段PQ中点的轨迹方程.
提示:用点合法做.
人气:328 ℃ 时间:2020-03-26 03:18:06
解答
设参数方程 P(Acosa,Bsina)Q(Acosb,Bsinb) Kop=Btana/A Koq=Btanb/A B^2tanatanb/A^2=-1/2 PQ终点坐标(Acosa/2+Acosb/2,Bsina/2+Bsinb/2)x^2=A^2/4(cosa+cosb)^2 y^2=B^2/4(sina+sinb)^2
推荐
- 已知椭圆x^2/2+y^2=1,椭圆上有两点P.Q,O为原点,且有直线OP.OQ的斜率满足Kop*Koq=-1/2求线段PQ中点M轨迹
- 椭圆X^2/16+Y^2/4=1上有两点P、Q,O是原点,若OP、OQ斜率之积为-1/4,求证|OP|^2+|OQ|^2为定值.
- 椭圆X^2/25+y^2/5=1上有两点P,Q.O为坐标原点,且直线OP,OQ斜率之积为1/5,求证OP^2+OQ^2为定值
- 椭圆x ^ 2/16+y ^ 2/4=1上有两点P,Q,O为坐标原点,连结OP,OQ,若Kop*kOQ=-1/4,
- 直线l与椭圆x^2/4+y^2=1交于p,q两点,已知l的斜率为1,求pq中点轨迹方程
- 请写出一句有关青春的名言
- \"根据早上收音机的天气预报今晚有大雨,要求同学们离开教室时\"的英文翻译
- 《乡村四月》主要写了什么?表达了作者什么情感?
猜你喜欢