令f′(x)=a(x+2)(x-1)=0得x=-2或x=1
x∈(-∞,-2)时f′(x)的符号与x∈(-2,1)时f′(x)的符号相反,x∈(-2,1)时f′(x)的符号与x∈(1,+∞)时f′(x)的符号相反
∴f(-2)=−
| 8 |
| 3 |
| 16 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 5 |
| 6 |
∵图象经过四个象限
∴f(-2)•f(1)<0即(
| 16 |
| 3 |
| 5 |
| 6 |
解得−
| 6 |
| 5 |
| 3 |
| 16 |
故答案为B
| 1 |
| 3 |
| 1 |
| 2 |
| 3 |
| 16 |
| 6 |
| 5 |
| 3 |
| 16 |
| 6 |
| 5 |
| 6 |
| 5 |
| 3 |
| 16 |
| 8 |
| 3 |
| 16 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 5 |
| 6 |
| 16 |
| 3 |
| 5 |
| 6 |
| 6 |
| 5 |
| 3 |
| 16 |