令f′(x)=a(x+2)(x-1)=0得x=-2或x=1
x∈(-∞,-2)时f′(x)的符号与x∈(-2,1)时f′(x)的符号相反,x∈(-2,1)时f′(x)的符号与x∈(1,+∞)时f′(x)的符号相反
∴f(-2)=−
8 |
3 |
16 |
3 |
1 |
3 |
1 |
2 |
5 |
6 |
∵图象经过四个象限
∴f(-2)•f(1)<0即(
16 |
3 |
5 |
6 |
解得−
6 |
5 |
3 |
16 |
故答案为B
1 |
3 |
1 |
2 |
3 |
16 |
6 |
5 |
3 |
16 |
6 |
5 |
6 |
5 |
3 |
16 |
8 |
3 |
16 |
3 |
1 |
3 |
1 |
2 |
5 |
6 |
16 |
3 |
5 |
6 |
6 |
5 |
3 |
16 |