在直角三角形ABC中,角ACB=90度,AC=BC,P Q是斜边上两点,角PCQ=45度,求证:AP的平方+BQ的平方=PQ的平方
人气:297 ℃ 时间:2019-08-21 13:18:31
解答
将三角形CAP以点C为中心旋转到AC与BC重合,连接Pˇ与Q
则有直角三角形PˇBQ
所以AP的平方+BQ的平方=PˇQ的平方
又三角形CPQ与三角形CQPˇ全等(2边及夹角均相等)
所以PˇQ=PQ
得证
推荐
- 等腰直角三角形ABC中,∠ACB=90度,AC=BC,PQ在斜边上,∠PCQ=45度求证PQ*2=AP*2+BQ*2(*代表次方)
- 等腰直角三角形ABC中,∠ACB=90度,AC=BC,PQ在斜边上,∠PCQ=45度 AP=2 BQ=3,求PQ的长
- 如图,在Rt三角形ABC中,∠ACB=90°,AC=BC,点P,Q在斜边AB上,且∠PCQ=45°.求证PQ的平方=AP∧2+BQ∧2
- 三角形ABC中,AC=BC,角BCA=90度,P Q在AB上,角PCQ=45度 求证PQ^2=AP^2+BQ^2
- 在等腰直角三角形ABC中,AC=BC,P,Q是斜边AB上的任意两点,且∠PCQ=45°,求证PQ^2=AP^2+BQ^2
- 将自然数,1,2,3,4,5按三角形击剑律排列,则第15行的各数之和是多少?
- 英语翻译
- 英语翻译
猜你喜欢