如图,在Rt三角形ABC中,∠ACB=90°,AC=BC,点P,Q在斜边AB上,且∠PCQ=45°.求证PQ的平方=AP∧2+BQ∧2
详细证明过程
人气:410 ℃ 时间:2019-08-21 12:35:20
解答
PQ^2=CQ^2+PC^2-2^(1/2)CQ*PC
同理有BC,BQ,QC ;AC,AP,PC的关系
三式化简(AC=BC)有
PQ^2=AP^2+BQ^2+2^(1/2)(AC*QP-CQ*CP)
又三角形QPC与三角形QCA相似
有AC*QP-CQ*CP=0
推荐
- 在Rt三角形ABC中,AC=BC,∠C=90°,P、Q在AB上,且∠PCQ=45°,试猜想AP、BQ、PQ能组成三角形吗?什么形状
- 三角形ABC中,AC=BC,角BCA=90度,P Q在AB上,角PCQ=45度 求证PQ^2=AP^2+BQ^2
- rt三角形abc中,ac=BC,PQ在AB上,PQ平方=AP平方+BQ平方,求∠PCQ的度数,(P,Q在AB上)
- 在Rt三角形ABC中,角ACB=90°,AC=BC,P、Q为斜边AB上两点,角PCQ=45°试说明AP²+BQ²=PQ²
- 在直角三角形ABC中,角ACB=90度,AC=BC,P Q是斜边上两点,角PCQ=45度,求证:AP的平方+BQ的平方=PQ的平方
- 旅游中如何保护环境英语作文
- 以环保为主题,可以举办什么比较有创意的活动?
- 初一下册生物小李患了糖尿病他应在饮食中尽量减少膳食宝塔什么食物?
猜你喜欢