已知椭圆x2/b2+y2/a2=1,(a>b>0)的离心率为根号2/2,且a2=2b (1)求椭圆的方程
(2).直线l:x-y+m等于0与椭圆交于A、B两点,是否存在实数m,使线段AB的中点在圆x2+y2等于5上若存在,求出m的值,若不存在 说出理由
人气:361 ℃ 时间:2020-04-10 10:06:18
解答
1,告诉离心率,就是已知a,b的比值.
e方=c方/a方=(a方-b方)/a方=1-(b方/a方)
所以b方/a方=1-e方
b/a=根号下(1-e方)=根号2/2
所以 根号2a=2b
a方=2b=根号2a
即a方-根2a=a(a-根2)=0
解得a=根号2,所以b=1
那么椭圆方程就是x方+y方/2=1
2,第二问的思路很明确,就是计算量偏大.可以自行尝试把直线方程和椭圆方程联立,用参数m表示出交点AB,以及AB中点.然后代入圆的方程求出M即可.第二问用M表示出来了也带入了求不出来 m等一下我看看
推荐
- 已知椭圆x2/a2+y2/b2=1的离心率为根号3/2 且过点(根号3 1/2) (1)求椭圆的方程
- 椭圆x2/a2+y2/b2=1(a>b>0)的离心率e=根号3/2,点A(0,3/2)与椭圆上的点的最大距离是根号7求椭圆的方程
- 椭圆焦点在y轴上,离心率e=根号3/2,且焦点到椭圆的最短距离为2-根号3.求椭圆的方程及长轴的长,焦距
- 已知椭圆的离心率为根号3/2,直线y=1/2x+1与椭圆交于A,B两点,点M在椭圆上,OM=1/2OA+根号3/2ob,求椭圆的方程
- 已知椭圆的方程为x2/a2+y2/b2=1e=根号2/2F1F2分别是椭圆的左右焦点F1垂直于长轴交
- 正三棱锥的底面边长为A,高为根号6/6A,则此三棱锥的侧面积为
- “富人之子”中,富人说:“彼米不是田中来?”
- 运动时心跳速率通常和人的年龄有关.用a表示一个人的年龄,用b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,则b=0.8(220-a).
猜你喜欢