已知f(x)=2(m+1)x2+4mx+2m-1,如果函数在(0,正无穷)只有一个零点,求m的取值范围
人气:194 ℃ 时间:2019-10-17 01:18:21
解答
当2(m+1)>0,即m>-1时
只需f(0)<=0即可,得出-1<m<=二分之一
当2(m+1)=0时也可以,f(x)为一次函数
得m=-1可知有x=-3/4,满足题意
当2(m+1)<0,即m<-1
只需f(0)>=0即可,得出无解.
综上所述m的范围为-1<=m<=二分之一.
推荐
- 已知函数f(x)=2(m+1)x^2+4mx+2m-1如果函数有两个零点一个大于0,一个小于0,求m的取值范围
- 函数f(x)=2(m+1)x方+4mx+2m-1 若函数f(x)的一个零点为0,当m=?时 函数f(x)有两个零点?
- 如果函数f(x)=2(m+1)x²+4mx+2m-1在(0,+∞)上至少有一个零点,求m的取值范围.
- 已知函数f(x)=2(m+1)x^2+4mx+2m-1,(1)若函数的一个零点在原点,求m的值;
- 已知函数f(x)=2(m+1)x2+4mx+2m-1的一个零点为1求fx的所有零点
- 一桶水连桶重38.5千克,倒去水的一半后连桶重23.5千克,原来有水多少千克?
- 2SO3+H2O===?
- 小学有余数的除法( )/( )=8.8,有没有这样的题目
猜你喜欢