用反证法证明:不存在整数m,n,使得m2=n2+1998.
人气:275 ℃ 时间:2020-06-27 01:25:47
解答
假设存在整数m、n使得m2=n2+1998,则m2-n2=1998,即(m+n)(m-n)=1998.
当m与n同奇同偶时,m+n,m-n 都是偶数,∴(m+n)(m-n)能被4整除,但4不能整除1998,此时(m+n)(m-n)≠1998;
当m,n为一奇一偶时,m+n 与m-n 都是奇数,所以(m+n)(m-n)是奇数,此时(m+n)(m-n)≠1998.
∴假设不成立则原命题成立.
推荐
猜你喜欢
- 作文 我与书的故事600字就行,谢谢(不许重复)
- 英语中喜欢与不喜欢表达法有哪些 越多越好
- 设A为3阶矩阵,|A|=1/2,求|(2A)-1-5A*
- 请问:maintain,stay,keep,hold 的区别,谢谢!
- 一块木板长198分米、宽90分米,要锯成若干个正方形,而且没有剩余,最少可以锯成多少块?
- 体积是100立方厘米的金属块,重7.9N(1)它的密度是多少?是什么金属?(2)当它全部浸没在水中时,受到的浮力是多大>这时如果把铁块挂在弹簧秤上,弹簧的读数是多少?
- 课外文言文 三间茅屋,十里春风
- 心肌细胞的动作电位是什么