关于x的二次函数y=x平方-2mx-m的图像与x轴交于A(x1,0)B(x2,0)两点且x1<0<x2,与y轴交于C点且∠BAC=∠BCO
1、求这个二次函数的解析式
2、以点D(根号二,0)为圆心做圆D,与y轴相切与点O,过抛物线上一点E(x3,t)(t>0,x3<0)作x轴的平行线与圆D交于F、G两点,与抛物线交于另一点H.问:是否存在实数t,使得EF+GH=FG?若存在,请求出t的值;若不存在,请说明理由
人气:377 ℃ 时间:2020-04-08 01:13:51
解答
1.图像与x轴交于A(x1,0)B(x2,0)两点,则二次函数可表达为y = (x - x₁)(x - x₂)
= x² - (x₁ + x₂)x + x₁x₂
C(0,x₁x₂),且x₁x₂ < 0
tan∠BCO = |OB|/|OC| = |x₂|/|x₁x₂| = x₂/(-x₁x₂) = -1/x₁
∠BAC与AC的倾斜角互补,tan倾斜角 = tan(π - ∠BAC) = -tan∠BAC
tan倾斜角 = (x₁x₂ - 0)/(0-x₁) = -x₂
tan∠BAC = x₂ = tan∠BCO = -1/x₁
x₁x₂ = -1 = -m
m = 1
y = x² - 2x -1
2.EF + GH = FG = FH + GH
EF = FH
即F在抛物线的对称轴上.
y = x² - 2x -1 = (x - 1)² -2
对称轴:x = 1
圆D方程:(x - √2)² + y² =2
带入x = 1,t = y = √(2√2 -1) (-√(2√2 -1)< 0,舍去)
推荐
- 关于x的二次函数y=x^2-2mx-m的图像与x轴交于A(x1,0),B(x2,0)两点,且x2〉0〉x1,与y轴交于点C,且∠BAC = ∠BCO.
- 已知二次函数y=x的平方-2(m-1)x-1-m的图像与x轴交于点A(x1,0),B(x2,0),x1
- 如图,二次函数y=x2+2mx+m2-4的图象与x轴的负半轴相交于A、B两点(点A在左侧),一次函数y=2x+b的图象经过点B,与y轴相交于点C. (1)求A、B两点的坐标(可用m的代数式表示); (2)如果▱A
- 已知二次函数y=x`2-(2m+1)x+m的图像交x轴于A(x1,0),B(x2,0)两点,交 y轴正半轴于点C,且X1的平方
- 已知二次函数y=1/2mx^2+3/2x-2m的图像与x轴交于A(X1,0)B(X2,0)与y轴交于C(0,C)且
- 4+3X=40怎么解
- 初中阶段应该掌握那些语法和单词?
- ∫1/(1+³√x)dx
猜你喜欢