随机变量分布函数Fx(x)=﹛1-X^-λ,x>1.时0,x0) ,Y=lnX,求Y的概率密度fy(y)
人气:434 ℃ 时间:2019-08-21 07:25:40
解答
F(x)=1-x^(-λ) x>1
0 x≤1
假设Y的分布函数为G(y),则
G(y)=P(Y≤y)=P(lnX≤y)=P (X≤e^y)=F(e^y)
当e^y>1时,即y>0时,有G(y)=1-e^(-λy),
当e^y≤1时,即y≤0时,有G(y)=0
所以Y的分布函数为
G(y)=1-e^(-λy) y>0
0 y≤0
从而Y的概率密度函数
f(y)=G'(y)=λe^(-λy) y≥0
0 y
推荐
- 设随机变量X,Y相互独立,其概率密度函数分别为fx(X)=1,0≤X≤1,fy(Y)=e^(-y)……
- 设随机变量X,Y相互独立,其概率密度函数分别为 fx(x)=1 0
- 设随机变量x服从参数λ=1的指数函数,求Y=lnx的概率密度
- 设二维随机变量(x,y)概率密度函数为f(x,y)={6x,0<x<1,0,其他},求X,Y边缘概率密度fx(x),fy(y)
- 设随机变量X服从【0,1】上的均匀分布,求随机变量函数Y=e的x次幂的概率密度fY(Y)
- 当正整数m为?时,方程组{1、y=mx+3 2、y=(2m-1)x 的解是正整数
- 2x的平方减4xy减2x等于多少
- she would like swimming with me.修改病句
猜你喜欢